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1 Introduction

The term “Systematic risk” is a well established concept that derives from the seminal

work on portfolio choice proposed by Markowitz (1952) and extended in a general equi-

librium framework by Sharpe (1964), Lintner (1965a,b), and Mossin (1966) and in the

Arbitrage Price Theory model by Ross (1976). It refers to the risk an investor of a well-

diversified portfolio is exposed to, which stems from the dependence of returns to common

factors.

On the other side, the definition of ”Systemic risk” is not well defined throughout the

literature and, as a result, can be measured from a wide range of perspectives.

According to Acharya and Yorulmazer (2002), Nier et al. (2007) and De Bandt et al.

(2010) systemic risk materialises through (1) “pure” contagion, (2) exposure to common

factors, (3) herding behaviour causing informational contagion, and (4) feedback effects

from endogenous fire sales. Hartmann (2002) argues systemic risk stems from either

build-up imbalances, contagion or large shocks.

The broad definition provided above links contagion risk to systemic risk as well as

exposure to common factors, that in principle is largely related to systematic risk. A

natural statistical model for capturing systemic risk exposure due to linkages between

institutions is a network model, which is commonly used to describe features of a network

of connections.

In this paper we provide a unique framework for systematic risk and network con-

nections and estimate the feedbacks among network exposures and common factors and

the impact of them on the risk exposures and risk premia of stock returns. More specifi-

cally, we look to the the interactions of the four ways through which a broad definition of

systemic risk materialize, i.e. the relationships between (i) “pure” contagion, (ii) herding

behaviour causing informational contagion, and (iii) feedback effects from endogenous fire

sales that could be well captured by a network model and exposures to common factors

that could be considered per se as systematic risk exposure.

A growing literature investigates the role of interconnections between different firms
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and sectors, functioning as a potential propagation mechanism of idiosyncratic shocks

throughout the economy. Acemoglou et al. (2011) use network structure to show the

possibility that aggregate fluctuations may originate from microeconomic shocks to firms;

Billio, Gray, Getmansky, Lo, Merton and Pelizzon (2014) use contingent claim analysis

and network measures to highlight interconnections among sovereign, banks and insur-

ances. There are several other contribution in the literature on network analysis: see

Billio, Getmansky, Lo, and Pelizzon (2012), Diebold and Yilmaz (2014) and Hautsch,

Schaumburg, and Schienle (2012, 2013) and Barigozzi and Brownlees (2014). Network

interconnections and the effects called network externalities that arises from small and

local shocks that can become big and global is a possibility discarded in standard asset

pricing and macro-economics models due to a “diversification argument”. As argued by

Lucas (1977), among others, microeconomic shocks would average out and thus, would

only have negligible aggregate effects. Similarly, these shocks would have little impact

on asset prices. However, there is already a growing literature on the role of sectorial

shocks in macro fluctuations; examples include Horvath (1998, 2000), Dupor (1999), Shea

(2002), and Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2011).

The need for understanding the propagation mechanisms behind the recent financial

crises leads to an increased interest for works associated with systemic risks. In this

framework, network-based methods described above will be used to infer from data the

linkages between institutions (or companies). Part of the literature postulates that sys-

temic risk is strictly related (if not equal) to systematic risk and therefore there is no need

to distinguish among the two. With this paper instead we argue that it is important to

disentangle the channels through which risk propagates: spillover or contagion channels

versus exposures to common factors.

In fact, the contribution of this paper to this literature is to propose a modelling

framework where network interconnections and common factors risks co-exist. The pro-

posed model is a variation of the traditional CAPM/APT model where networks are used

to infer the exogenous/lagged and contemporaneous links across assets. This approach
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allows us to decompose the risk of a single assets (or a portfolio) in four components:

the two classical systematic and idiosyncratic components and (i) the impact of the asset

interconnections on the systematic risk component, that is the contribution of network

exposure to the systematic risk component and (ii) the effect of interconnections on the

idiosyncratic risk on the systematic risk component, that is the amplification of idiosyn-

cratic risks that generates systematic/non diversifiable risk. Our approach allows us also

to decompose the risk premium component of returns in three components: the risk pre-

mium associated with (i) common factors exposures, (ii) impact of asset connections to

common factors, and (iii) the amplification effects of idiosyncratic risk.

Our proposed methodology is verified both on simulations as well as on real data.

The simulation analysis has been provided mostly for clarifying the decomposition of the

contribution to volatility of a single asset or a portfolio of network interconnections. In the

empirical analysis, we use the Granger causality approach proposed by Billio et al. (2012)

to extract connections among institutions from the Fama-French sectors portfolio and

the approach used in spatial econometrics, namely the use of concentrated likelihoods, to

estimate the exposures of returns to network connections and therefore their contribution

to sectors volatility and beta exposures.

The remainder of the paper is organized as follows. Section 2 describes network

models. Section 3 presents the extension to the CAPM/APT model to interconnectness

exposures. Section 4 presents the estimation methodology. Section 5 shows the results of

the empirical analysis on the Fama-French sector portfolios. Section 6 concludes.

2 Network Models in Finance

Network models have seen an extremely diverse array of applications: in the social sciences

with studies related to social networking on websites such as Facebook, in the natural

sciences with application to protein interactions, in government intelligence where they

are used to analyse terrorist networks, in politics with application to bill co-authorship,
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in economics with potential used in labour markets analysis, and many other areas. In

finance, network models have most frequently been used to assess financial stability. In

fact, interconnections among financial institutions create potential channels for contagion

and amplification of shocks to the financial system that can be also propagated to the

“real economy”.

Applications in this area have gauged considerable interest in the aftermath of the

2007-2009 financial crisis. Network representation of interconnections ranges from linkages

extracted from balance-sheet information to connections estimated by means of econo-

metric approaches from either market data, accounting data or macroeconomic data.

The majority of such “real-world” networks have been shown to display structural

properties that are neither those of a random graph, nor those of regular lattices.

In order to evaluate the relevance and the price of interconnections in the financial

system it is fundamental to understand all of the channels by which small and local shocks

can become big and global.

Empirical network modelling has been conducted for assessing asset pricing linkages

via contagion (Allen and Gale 2000; Dasgupta 2004; Leitner 2005, Billio, Getmansky, Lo,

and Pelizzon (2012), Diebold and Yilmaz (2013) and Hautsch, Schaumburg, and Schienle

(2012, 2013), Brownlees (2014)), linkages via balance sheets (Cifuentes et al 2005; Laguno

and Schreft 2001), and how failures of institutions result from mutual claims on each other

(Furfine 2003; Upper and Worms 2004; Wells 2004). Babus and Allen (2009) provide a

review of network models in finance.

Much of the empirical finance literature has focused on “direct”contagion arising from

firms’ contractual obligations. Direct contagion occurs if one firm’s default on its contrac-

tual obligations triggers distress (such as insolvency) at a counterparty firm. Researchers’

simulations using actual interbank loan data suggest that “domino defaults ”arising from

contractual violations are very unlikely, (see Furfine (2003) Eisinger et al. (2006), Up-

per and Worms (2004); Mistrulli (2007); Degryse and Nguyen (2007), Van Lelyveld and

Liedorp (2006) and Alves et al (2013)) though they can be highly destructive in the event
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that they do materialise.

Contractual obligations are not the only means by which small and local shocks can

spread and generate perverse externalities. Focusing only on direct contagion underesti-

mates the risk of financial crisis given that other important channels exist like common

exposures, fire sales, illiquidity spirals and, information spillover. For example, in its

survey Upper (2011) reports that simulations using actual interbank loan data suggest

that domino defaults are very rare events, and Abbassi, Brownlees, Hans and Podlich

(2014) shows that model network structures for a sample of German banks based on CDS

data are only marginally explained by direct connections through interbank exposures

and common exposures to similar asset classes extracted by accounting data.

The approach that we follow in this paper is that both direct and indirect interconnec-

tions extracted from accounting or direct exposures data and market data could co-exist

and have implication on the dynamic of the returns of financial assets. Therefore, our ap-

proach is very general. We first concentrate on interconnections that could be estimated

from market data and then we provide a theoretical extension of the model where also

direct linkages like balance-sheet exposures or common exposures to similar asset classes

could be included in the framework.

The advantage of using market data to extract linkages has relevant advantages: the

data are easily available, have higher frequency (that is more information, and a more up-

to-date view of links) e and the linkages extracted from market data are forward looking in

contrast to balance-sheet/accounting data that provide a pictures of the actual exposures

(and might be seen thus as backward-looking). The forward looking interpretation can

also supported by the general idea that market prices can be seen as reflecting information

available to traders/operators/market participants, and, in equilibrium, correspond to the

discounted value of future dividends (thus with a link to fundamental valuations of stocks).

Formally, we could represent networks as nodes that are connected (in general) to a

subset of the network total number of nodes, where connections represent links across

nodes. A financial system could be represented as a network structure where nodes
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represent assets or the value of financial or non financial institutions, and shocks on one

asset/institutions are transmitted to the connected ones.

Networks are, in general, graphically represented, and we also provide some exam-

ples in the empirical section. Nevertheless, networks have an equivalent (square) matrix

representation. Let us call W the K−dimensional square matrix representing a net-

work composed by K financial assets/companies. Each entry wi,j represents the possible

connection between assets i and j. A zero entry indicates that the two assets are not

connected, while a non-null entry indicates the existence of a connection. Depending on

the approach adopted to estimate the network, non-null entries might differ one from the

other, that is they track the strength/intensity of the connection, or might be simply

equal one to the other, and thus just indicate the existence of a connection. An example

of the last case is the following matrix:

W =



0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


, (1)

where note that the diagonal contains only null elements (each asset is not influencing

itself) and the network is not symmetric as the first asset is connected to the fourth one,

but the opposite is not true.

Interestingly, matrices similar to that of equation (1) are very common in other eco-

nomic and statistic applications, those concerning research and studies associated with

spatial econometrics and spatial statistics. In these fields, subjects (like towns, buildings,

regions) are neighbour one to the other in a physical way, and the W matrices represent

the neighbouring relations with entries possibly associated with the physical distance ex-

isting between two subjects; they are normally called spatial matrices, and are commonly
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row-normalized.

Matrix representation of financial networks might thus be seen as the financial parallel

of spacial matrices. Clearly, neighbouring relations are no more physical, but are the out-

come of a specific model, measuring or estimation approach. Going back to the graphical

representation of networks, where nodes are connected one to the other, we might state

that connected nodes (assets/firms) are thus neighbour.

Finally, we stress that, if we consider matrices monitoring only the existence of the

connection across assets, we adhere to the concept of “first order contiguity ”where a unit

entry denotes the existence of a connection and the fact that two assets are neighbour,

see LeSage (1999). In addition, by convention in spatial statistic/econometrics, the main

diagonal of the W matrix contains zero elements.

In the following, we will clarify how network connections, as monitored by the matrix

W will convey relevant information on the evolution of asset returns. In doing that, we

do not restrict ourselves to a specific structure of W , that is with a W monitoring the

existence of a connection and/or the intensity of the link, but will propose a model which

can be used with any form of W . Moreover, according to Elhorst (2003), we will anyway

normalize W by row, so that, if we are monitoring only the existence of the connection,

we equalize the impact of each unit on all other units.

Later, when moving to the empirical part, we will also briefly discuss alternative

methods that can be followed to estimate the existence of a connection across two assets.

3 The systematic effects of network exposure

Since the seminal works of Sharpe (1964), Lintner (1965a,b), and Mossin (1966) linear

returns models have attracted a huge interest in the financial economics literature, and

have had an extraordinary impact on both research and practice. In the last decades,

multifactor generalizations of the CAPM model have been proposed and are now as dif-

fused as the single factor model. The first multifactor models stem from the work of
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Ross (1976) on the arbitrage pricing theory, and the most commonly used approaches in

pricing take now into account the developments of Fama and French (1993 and 1995),

and Carhart (1997), leading to the so-called three-factor and four-factor CAPM models,

respectively. The latter approach represents our starting point for the introduction of the

impact of network exposure on both the systematic and idiosyncratic risk components.

We thus start from a linear model for a K-dimensional set of time t risk asset returns,

which we denote by Rt:

Rt = α + βMR
M
t + βHMLR

HML
t + βSMBR

SMB
t + βMOMR

MOM
t + εt (2)

where RM
t is the returns on the equity market index, RHML

t is the book-to-market

factor (see Fama and French, 1995), RSMB
t is the size factor (see Fama and French,

1995), and RMOM
t is the momentum factor (see Carhart, 1997). Moreover, α, βM , βHML,

βSMB and βMOM are K−dimensional vectors of model parameters, and εt is the vector

of idiosyncratic shocks. The beta vectors monitor the exposure to the common factors

and assume a central role in the following analyses. To simplify the following steps, we

represent the model in a compact form by collecting the four common factors into a single

vector Ft =
[
RM
t RHML

t RSMB
t RMOM

t

]′
and the factor exposure vectors into a matrix

β = [βM : βHML : βSMB : βMOM ].1 We thus obtain the following representation

Rt = α + βFt + εt. (3)

Note that, the notation we use, and thus also the following generalizations, can be

applied to any collection of risk factors. However, for reasons explained below, the risk

factors should not be recovered by means of statistical approaches, such as principal

component analysis or the estimation of a latent factor model, but must be observed

variables.

If we take a pricing perspective, we assume that factors have zero mean, and the model

1With the symbol : we denote horizontal concatenation of column vectors.
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intercept can be replaced by the vector of expected returns

Rt = E [Rt] + βFt + εt. (4)

Moreover, expected returns depend on the factor risk premiums Λ obtaining

E [Rt] = rf + βΛ. (5)

The four-factor CAPM allows decomposing the total risk of the assets into the sum of

two components:2

V [Rt] = βΣFβ
′ + Ωε, (6)

where V [·] is the variance operator, V [Ft] = ΣF is the covariance matrix of the

common factors, and V [εt] = Ω is the covariance matrix of the idiosyncratic shocks. The

first term on the right represents the systematic contribution to the total risk, while the

second term is the idiosyncratic risk contribution. The same decomposition of the total

assets risk applies also to a generic portfolio formed with the K assets. If we take a vector

of portfolio weight ω,3 the portfolio returns satisfy the following equalities

rp,t = ω′Rt (7)

= ω′E [Rt] + ω′βFt + ω′εt

= E [rp,t] + βpFt + ςt,

where E [rp,t] = rf + βpΛ. Moreover, we know that the total risk of the portfolio is

2This holds for any multifactor model.
3We assume that portfolio weights sum at 1 but we do not exclude short selling.
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given as

V [rp,t] = ω′βΣFβ
′ω + ω′Ωεω (8)

= βpΣFβ
′
p + σ2

ς

This framework has relevant implications both for portfolio risk and diversification as

well as for pricing of securities. If we take a diversification point of view, the final purpose

is to control or sterilize the impact of asset idiosyncratic risks on the total portfolio risk.

This corresponds to the willingness of achieving the following limiting condition

limK→∞ω
′Ωεω = σ̃2 > 0 (9)

where σ̃2 is a small quantity depending on the idiosyncratic shock variances and cor-

relations, as well as on the portfolio composition. In a simplified setting, assuming that

idiosyncratic shocks are uncorrelated, that their variances are set to an average value σ̄2

and taking an equally weighted portfolio, we have the following well-know result

limK→∞ω
′Ωεω =

1

K
σ̄2 = 0, (10)

showing that diversification allows sterilizing the idiosyncratic shocks.

In this framework the focus is on the shocks impact, since we know that the systematic

risk component cannot be diversified out, as it is driven by common factors. Therefore, in

the multifactor model, the introduction of new assets allows a contraction of the contribu-

tion of the idiosyncratic component to the total risk of the portfolio, but has, in average,

no effects on the systematic components.4

Our proposal aims at introducing in a multifactor model the impact coming from the

contemporaneous links that exist across assets, when those are captured by a network.

As discussed in the previous section, networks will provide information on the existence

4Nevertheless, we note that, by means of short selling and when a risk free asset is present, we might
be able to build portfolios that annihilate the effect of at least some risk factors.
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of links and might also convey details on the intensity of the link existing across assets.

Therefore, we aim at coupling the systematic and idiosyncratic risks with a sort of network

risk that would introduce in the model the assets cross-dependence beyond that captured

by common factors. Given this further element we will then evaluate the effects on

traditional uses of the multifactor model.

Let us assume that the risky assets are interconnected and that those links can be

represented by a network. The network relations, as observed in the previous section, can

be, in some sense, forward looking or represent the actual state of the connections across

assets. From this point onward, we will assume that, indifferently from the approach

adopted for the estimation of the network, the network will impact on the contemporane-

ous relations across assets. Starting from this assumption, we have to partially reconsider

the interpretation of a general multifactor model. In fact, if we postulate the existence of

contemporaneous relations across risky assets, we must acknowledge that those are not

explicitly accounted for in 3. Moreover, the common factors capture the dependence of

each risky asset from common sources of risk, but the presence of interconnections im-

plies that risky assets are exposed to the movements (both systematic and idiosyncratic)

of other risky assets. We might label this additional component as network exposure. In

addition, risky assets might differ in terms of interconnections with other assets, and can

thus be affected by an additional form of heterogeneity going beyond those associated

with the different exposure to common factors and with the relevance of the own idiosyn-

cratic risk. As a consequence, the beta matrix with respect to common factors that can

be recovered from 3 cannot be directly linked to both the interconnections and to the

source of network heterogeneity across risky assets.

One possible way of indirectly recovering the network exposure is to interpret the

model in 3 as a reduced form model where reduced form parameters (the betas and the

error covariance) are functions of structural parameters. The latter thus include the true

exposure to common factors, the exposure to other assets due to the interconnections (or

network exposure) and the structural idiosyncratic shock’s variance.
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To shed some light on the previous points we rewrite the model in 4 as a structural

simultaneous equation system

A (Rt − E [Rt]) = β̄Ft + ηt (11)

where the matrix A captures the contemporaneous relations across assets and it co-

exist with the common factors which are here considered as exogenous variables. In 11 the

covariance of ηt represents the structural idiosyncratic risk while the parameter matrix

A is associated with assets interconnections, and thus with a network. Further details

on the last aspect will be given in few paragraphs. If we translate the model 11 into a

reduced form, we have

Rt = E [Rt] + A−1β̄Rm,t + A−1ηt (12)

where we stress two well-known elements. Firstly, we observe that the reduced form

parameters of the four factor model, which can be consistently estimated by least squares

methods, are non-linear functions of the interconnections across assets (the matrix A)

and of the structural exposure to common factors (the matrix β̄). Secondly, the covari-

ance matrix in 3 is also influenced by the presence of asset’s interconnections. Note that,

if we postulate that i) a network structure exists, and thus assets are interconnected,

ii) that there are just four common factors, and then iii) we estimate the linear factor

model in 3 without taking into account the network, we have by construction that the

shocks are correlated.5 Therefore, the empirical evidences of idiosyncratic shock correla-

tion found on the residuals of a four-factor CAPM model might be due to the exclusion

of contemporaneous relations as shown by the results of Ang, Hodrick, Xing, and Zhang

(2006): idiosyncratic volatility risk is priced in the cross-section of expected stock returns,

a regularity that is not subsumed by size, book-to-market, momentum, or liquidity effects.

We also highlight a further aspect. If the common factors are estimated by means

5This holds if we assume that A is not diagonal. However, this is an inconsequential restriction as if
A is diagonal we do not have contemporaneous relations across assets.
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of statistical approaches rather than being observed variables, the network exposure, if

present, will be totally destroyed. In fact, statistical factors are generally estimated from

a reduced form model. Therefore, if we neglect the network exposure and adopt, say,

principal component analysis, or fit a latent factor model, it might happen that one of the

identified factors represent a sort of proxy of or a biased estimate of the network exposure,

with possible further biases on the estimated factor loadings.

Our approach aims are re-introducing contemporaneous relations into the four-factor

model thus allowing to recover both the impact of network exposure as well as the exposure

to common factors. Note that both elements co-exist, and network exposure can be seen

as an additional common risk source going beyond that of common factors. We might

even define the exposure to common factors as the exogenous systematic risk exposure,

while the network exposure can be labelled as an endogenous systematic risk exposure.

Notably, in this way, the idiosyncratic risks will be defined as structural and, at least in

principle, should be less correlated than the shocks in 3.

The simultaneous equation system in 11 poses serious challenges for the estimation of

the matrix A. In fact, the number of factors can be assumed to be much smaller than

the number of risky assets. As a consequence, to identify the structural parameters, some

restrictions must be imposed on the matrix A.6

Our proposal for integrating network exposure and the dependence on common factors

is based on the peculiar structure we give to the matrix A. We suggest to make use of

an estimated network, and to specify A according to the links existing across assets as

identified by the network. In our approach, the network, that represents the contempo-

raneous relations across assets, is used as a tool to impose restrictions on the structural

parameter matrix A. In this respect, we are thus assuming that the network is given. In

other words, the network is exogenous and it is used to restrict the endogenous relations

in the simultaneous equation system in 11.

As we have previously argument, the network, and the associated measures of closeness

6Further details on identification and estimation issues are discussed in the following section.
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across assets, allow us making a parallel with concepts commonly used in spatial statistics.

In fact, the spatial proximity among subjects can be summarized into a weight matrix,

or spatial proximity matrix, W .

This is not novel in economic applications where spatial econometrics methods have

been applied in several areas including regional studies, real estate, environmental eco-

nomics, international convergence and spillover; see, among many others, Elhorst (2003),

Abreu et al. (2005), and Holloway et al. (2007). Nevertheless, the financial applications

of spatial methods is relatively recent: Fernandez (2011) introduces a model closely re-

lated to the one we adopt, but has a focus on Value-at-Risk estimation, and determines

closeness across assets on the basis of the Spearman correlation; Fernandez-Aviles et al.

(2012) show that stock markets proximity should be measured by means of financial quan-

tities and not by geographical distance; Arnold et al. (2013), combines different financial

closeness measures within an equity risk management framework; Asgharian et al. (2013)

analyse the impact of countries economic relation on stock market co-movements; Wied

(2013) considers risk management applications and parameter stability testing on spatial

models fitted to equity data; Denbee et al. (2013) focus on interbank liquidity; Keiler

and Eder (2013) analyse CDS spreads attaching a systemic risk interpretation to a spatial

component and defining closeness on the basis of the correlation; finally, Blasques et al.

(2014) analyse spillover dynamics within a model with time-varying spatial dependence.

We differ from the previous works under different aspects. Firstly, and opposite to

Keiler and Eder (2013), we interpret the spatial dependence as a component impacting

on and amplifying the systematic risk component, as also affecting the idiosyncratic risks.

We then go further and show how the spatial effect has an impact on both the expected

returns with implications on pricing (thus getting close to the work of Fernandez, 2011),

as well as on diversification. Secondly, we do not consider correlations to recover spatial

dependencies but we obtain the spatial linkages from an estimated network. We thus

contribute to the increasing literature providing alternative approaches for the estimation

of the spatial links on the basis of an economic or financial distance. In this respect, and
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in addition to the above mentioned financial works we cite, among others, the economic

distance approaches adopted by Conley and Topa (2002) and LeSage and Pace (2008).

Thirdly, by taking a simultaneous system estimation and an estimation of the spatial

links on different databases (which also have different time frequencies) we induce a time-

variation in the spatial dependence, differing but being close to the works of Keiler and

Eder (2013), and Blasques et al. (2014). Fourthly, we generalize the approaches previously

adopted in a financial framework allowing for asset-specific reaction to spatial links.

As we previously mentioned, in our framework spatial linkages derives from an esti-

mated financial network. We thus assume that linked assets are neighbors. Therefore, if

we have a network we can re-cast it into a sort proximity matrix W . The latter can be

used to impose a structure on the matrix A. Given the matrix W , as extracted from a

network, we can easily specify a spatial autoregressive (SAR) model (see Anselin, 1988,

and LeSage and Pace, 2009):7

Rt − E [Rt] = ρW (Rt − E [Rt]) + β̄Ft + ηt (13)

where the (scalar) coefficient ρ captures the response of each asset to the returns of

other assets, as weighted with the corresponding row of W . Moreover, we assume that

the error term ηt has a diagonal covariance matrix, that is V [ηt] = Ωη is diagonal. Such

an assumption is required for identification purposes as we will discuss in the model

estimation section. Given we assume the matrix W is known, the expected returns are

conditional to the W . To maintain a simplified notation we do not report the conditioning

with respect to W in the returns expectations.

At the single asset level the model reads as follows

Ri,t = E [Ri,t] + ρ
k∑
j=1

wi,j (Rj,t − E [Rj,t]) + β̄iFt + ηi,t (14)

where wi,i = 0, wi,j ≥ 0 and
∑k

j=1wi,j = 1. Taking a financial point of view, the

7Anselin (1988) calls the model mixed-regressive spatial-autoregressive. We stick here to the simpler
acronym adopted in LeSage and Pace (2009).
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coefficients in the vector β̄i represent the exposure to the common factors, or exogenous

exposure, while the coefficient ρ tracks the endogenous risk exposure which is influenced

by the network structure, and thus called network exposure. Further insights on the

interpretation of the model coefficients will be given in the following subsections.

The model in 13 can be rewritten in a more compact form as follows

(I − ρW ) (Rt − E [Rt]) = β̄Ft + ηt (15)

thus highlighting the fact that spatial proximity and the associated SAR model give

a structure to the contemporaneous relation matrix, which is now parametrized as

A = I − ρW (16)

The structural model now includes contemporaneous relations, driven by links or con-

nections across asset, systematic components and asset specific shocks.

The model in (15) has, however, a very restricted structure. In fact, there is a sin-

gle parameter, the ρ driving the network exposure. This can be easily generalized by

allowing for asset-specific responses to the network structure. We can thus modify the

contemporaneous relation matrix of (16) into

A = I −RW (17)

where R = diag(ρ1, ρ2, . . . , ρK) is a diagonal matrix. This model is similar to the fixed

coefficient specifications for spatial panels discussed in Elhorst (2003). A clear advantage

of such a structure is given by the possibility that assets have different network exposures,

as for each asset the model becomes
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Ri,t = E [Ri,t] + ρi

k∑
j=1

wi,j (Rj,t − E [Rj,t]) + β̄iFt + ηi,t. (18)

To estimate the asset-specific parameters the network must satisfy an identification

condition: each asset must be connected to at least one other asset. If this is not the case,

the diagonal of matrix R must be restricted in such a way that not-connected assets will

not have a network exposure. Further details will be discussed in the estimation section.

The spatial econometrics literature generally assumes that the spatial proximity matrix

is time invariant. In fact, if the matrix W depends on physical measures, such as those

is the space, those can be safely assumed constant over time. However, in a financial

framework, the connections across assets might change over time for a number of reasons,

some of them being, for instance, the occurrence of an unexpected market shock, mergers

and acquisitions. Similar approaches have been adopted by Asgharian et al. (2013) and

Keiler and Eder (2013). We mentioned in Section 2 that the network structure can be

estimated on the basis of different approaches and data. The latter can be either time

series and/or cross sectional data. Therefore, the networks might be estimated, with the

same type of data, over different samples. An example of this approach will be provided

in the empirical section. Clearly, by changing the sample, we can easily obtain different

networks, and the time-evolution of connections across assets is itself a relevant, but also

expected, finding. Despite the time-variation of the networks, and still assuming the

network exogenous with respect to the linear structural model,8 the contemporaneous

matrix can be further re-written as

At = I −RWt (19)

where we highlight that the network changes over time, and thus lead to a time-varying

W matrix. In turn, this induce time-dependence on the Amatrix, as well as on the reduced

8We might relax the exogeneity assumption by stating that the network are known conditionally to
the past.
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form parameter matrices, both on the betas as well as on the covariance of idiosyncratic

shocks, that is, we have also heteroskedasticity. Nevertheless, we might postulate that

the dynamic of Wt is smooth, and operates at lower time scales as compared to those

monitoring the evolution of returns (for instance we can assume the W matrices change

over years, or after specific events such as crises). Therefore, the heteroskedasticity is

mild, and the betas are slowly evolving. The use of time-varying W matrices thus lead

to a time change in the spatial dependence differing from the approach of Blasques et al.

(2013) that obtain the same result by letting the R parameters being time-varying. We

notice that, if the network exposure exist and the structural parameters in the matrix

β̄ are constant, the estimation of the reduced form model over different sample might

suggest changes in the factor exposure. However, those changes are not present but due

to the misspecification of the network relations. We remind that the expected returns are

conditional to the W matrix. If the network exposure is time-varying, the conditioning

will operate over the full history of the time-varying Wt.

We close this section by introducing a further generalization of the model which is both

intuitive and feasible. This refers to the possibility of constructing a network structure

from different data, for instance cross-exposures or estimation of causality relations..

A-priori, we do not have information allowing to order the alternative networks. How-

ever, those can be easily introduced in the model, allowing the data to give an answer.

In fact, the contemporaneous relation matrix can be written as

A = I −
m∑
j=1

ρjWj (20)

where m different networks are jointly introduced into a model. The estimated pa-

rameters can then provide useful details on the relevance/preference of different network

measures.9 We also note that distance matrices W recovered from a network approach

9We note that, when the network exposure parameter are asset-specific, the introduction of different
W matrices requires some identification conditions that depend on the network structures.
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can be also jointly used with similar matrices obtained from different methods, such as

on the basis of economic sector partitions of assets as in Arnold et al. (2013) and Caporin

and Paruolo (2013), bilateral trades (Asgharian et al. 2013), or foreign direct investments

(Fernandez-Avila et al. 2012).

3.1 The impact of common factor and networks

The reaction of one asset to common factors and network exposure appears in a more

clear way once we rewrite the model in a reduced form representation, highlighting the

impact of the network connections included in W on the reduced form parameters (the

reduced form betas and the reduced form shock’s covariance):

Rt = E [Rt] +Aβ̄Ft +Aηt (21)

where A = A−1, A = I − ρW and we assume that A is non-singular. For simplicity,

we focus on the case where the network exposure is driven by a single parameter, the ρ.

However, all derivations and comments apply also to the more general parametrizations

of the matrix A previously introduced.

From LeSage and Pace (2009) we take the following relation

(I − ρW )−1 = I + ρW + ρ2W 2 + ρ3W 3 . . . , (22)

where the term ρW monitors the effect of linked assets (in spatial econometrics, the

neighbours), for instance if asset j is linked to asset i we have a non-null entry in Wij.

Differently, ρ2W 2 is associated with the effect on asset j induced by the assets linked to

asset i (those called in spatial econometrics, the second-order neighbours). The latter

relation can be further generalized to higher orders. Notably, the matrices W j might also

include a so-called feedback loop as, following the previous example, asset i can be linked

to asset j (the relation is thus bi-directional), causing the matrix W j to have non-null

elements on the main diagonal. We stress that, despite the summation has infinite terms,
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by imposing that |ρ| < 1 we ensure the effect of linked assets converges to zero. On the

contrary, if |ρ| > 1 we might have explosive patterns.

By using 22 we can rearrange the model in 21 as

Rt = E [Rt] + β̄Ft +
∞∑
j=1

ρjW jβ̄Ft + ηt +
∞∑
j=1

ρjW jηt. (23)

Such a representation highlights that the impact of the common factors as well as

of the idiosyncratic shocks on the risky asset returns can be decomposed into two parts

(each including two terms). The first component is the traditional, or direct, or structural

impact, while the second component is the impact associated with the network exposure.

We can thus define the following four elements:

a - β̄Ft: the structural exposure to common factors;

b -
∑∞

j=1 ρ
jW jβ̄Ft: the network exposure to common factors;

c - ηt: the structural impact of idiosyncratic shocks;

d -
∑∞

j=1 ρ
jW jηt: the network impact of idiosyncratic shocks.

Note that the network-related exposures depends on the structure of the matrix W as

well as on the parameter monitoring the network impact, the ρ. A relevant remark comes

from the network impact of common factors. Let’s take for simplicity a specific common

factor, that is, we focus on a single column of Ft and consider the impact of the m−th

factor on the risky asset returns

β̄m +
∞∑
j=1

ρjW jβ̄m. (24)

Equation (24) provides two relevant insights.

At first, we note that the network exposure to common factors acts as a multiplier of

the structural exposure if the ρ coefficient is positive (W elements are anyway positive).

Therefore, shocks to the common factors will be amplified by: the presence of connections
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across assets, that is when, for asset i, the i−th row of W contains at least one non-null

element; the change in the impact of network connections, that is when the ρ coefficient

increases; by changes in the network structure, that is when the matrix W changes. Note

that, if asset i is not connected to other assets, all products ρjW jβ̄i are equal to zero.

Now assume that for the risky asset i the m−th common factor is not relevant (that

is β̄i,m = 0). In this case, in the standard linear factor models, the common factor will

have no role in explaining the asset returns. However, when asset are linked and network

exposures are taken into account, a common factor to which a risky asset has a zero

structural exposure might still be relevant to explain the risky asset return evolution.

Such an effect is not direct but induced from the network exposure and is associated with

the existence of non null elements in the i−th row of the matrix W . Take for instance

the following case

W =


...

0i 1 0K−i−1
...

 (25)

where assets i is connected only to asset i+ 1 and subscripts denote the length of row

vectors of zeros. Moreover, assume the following factor exposure for both assets

β̄ =



...

βM,i 0 0 0

βM,i+1 βSMB,i+1 0 0

...


, (26)

where asset i is not exposed to SMB while asset i + 1 is affected by the same risk

factor. Asset i dependence on risk factors can thus be represented as

βM,iR
M
t + ρβM,i+1R

M
t + ρβSMB,i+1R

SMB
t +

∞∑
j=2

(
ρjW jβ̄Ft

)
|i (27)

where |i identifies the i−th element of a vector. Note that the last term on the right
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represents further elements that can be specified only through the knowledge of the entire

W matrix. Therefore, even if a risky asset i is not (structurally) exposed to a common

factor (in the previous example SMB), the common factor will play anyway role if it

impacts on the returns of the assets to which i is linked.

Such a result can be further generalized by focusing, for instance, on sector specific

risk factors. Those, in presence of a network exposure, despite being sector specific will

have a systematic impact on all connected assets. Moreover, if we disregard the network

exposure, we might also incur in the risk of misinterpreting the impact of risk factors. In

fact, by estimating the reduced form model we might label as common a factor that in

reality is structurally related just to a subset of the investment universe and impact on

other assets only through network connections.

A similar property exists for the idiosyncratic shocks. In fact, if we assume they are

uncorrelated, the existence of network connections implies that the structural shocks of

one asset impacts on the returns of all the connected assets. Therefore, shocks on single

assets can have effects on many other risky assets.10

From a pricing perspective, the expected returns in the most general model specifica-

tion equals

E
[
Rt| {Wt}Tt=1

]
= rf + β̄Λ +

∞∑
j=1

RjW j
t β̄Λ, (28)

thus highlighting the relevance of network exposures, that impacts on the expected

returns (which are conditional to the sequence of the Wt matrices. The existence of

links across assets induces higher expected returns as opposed to the case where links are

absent; this comes from the fact that we postulate the coefficients in R and the elements

of Wt are all positive. Thus, the exposure to common factors might depends on the

10Summary measures of the exposure to common factors and idiosyncratic shocks can be obtained
by mimicking the approaches used in spatial econometrics. A discussion on this topic is included in
LeSage and Pace (2009), see their section 2.7; these measures have been used in a financial framework
by Asgharian et al. (2013). We also note that the decomposition of asset returns into four elements is
equivalent to that of Abreu et al. (2005) for separating the standard impact of covariates from that due
to the spatial links, and is thus an alternative to the impact measures of LeSage and Pace (2009).
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connections with other assets and, bearing in mind the previous discussion, the expected

returns might depend on risk premiums associated with factors to which a given asset is

not directly exposed. The heterogeneity with respect to connections creates reactions to

shocks on the common factors that are differ across assets due to the different exposures

of assets to the factors, but also due to the different impact of feedback loops coming

from the underlying network structure. The change over time of the Wt matrix, or the

presence of a structural break on the R coefficients (that we might locate in proximity of

a crises or of an extreme event) might create abrupt changes in the expected returns with

the consequence of relevant movements in stock prices.

In addition, we stress that the use of a network which is very dense, thus implying

a W matrix almost full, will have further impacts. In fact, a full W implies that all

idiosyncratic shocks are correlated. However, from our viewpoint, this correspond to an

indirect evidence of model misspecification as an additional common factor is now present

but not taken into account. As a consequence, such a common factor risk must be priced,

and could generate the empirical evidences shown by (?). The latter case could also

correspond to an empirical evidence challenging the validity of the APT pricing approach.

From a different viewpoint, our modeling framework still satisfy the assumptions required

for APT. As we will show in the next section, the presence of a network exposure despite

inducing correlation across the idiosyncratic shocks does not exclude the existence of

diversification benefits. In turn, this is sufficient to guarantee the validity of the APT

where risk premiums can be recovered from the reduced form model. Finally, when we

introduce a time-variation in the W matrices, or in the R elements, the APT still holds

but with risk premiums estimated in the cross-sectional dimension for fixed values of W

and/or R and thus inducing also a time-change in the factor risk-premiums.

Up to this point, we have not yet discussed the sign of the ρ coefficient. Intuitively,

we expect that the assets are positively related one to the other, as the links are coming

from a network. We thus imagine that shocks transmit to connected assets preserving

their sign. If we take simplified model with one single ρ coefficient, it is highly improbable
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we will ever observe negative coefficients. In fact, a single coefficient represents a sort of

average reaction of the asset to the shocks coming from neighbors. However, in a model

accounting for the heterogeneity of the reaction to the network exposure, negative asset-

specific coefficients might appear. In other words, we cannot exclude a-priori that a shock

in one asset lead to an apposite movement of a linked asset. We motivate such a finding by

making a parallel with negative correlations. If two assets are negatively correlated, their

joint introduction in a portfolio lead to a decrease of the overall variance as compared to

the case in which only one of the two assets were present. In a factor model, negative

correlations across asset returns can be motivated by loadings to the (same) common

factors having different signs. In our framework, negative correlations across asset returns

can emerge both in response to different sings in the factor loadings but also due to the

presence of negative asset-specific reaction to the network exposure. Consider the reduced

form of our model as represented in equation (21). In this case, the innovation term has

a non-diagonal covariance. Let’s also assume that the spatial proximity matrix W is time

invariant and thus the reduced form model has time invariant betas and homoskedastic

innovations. If we estimate the reduced form model, the innovations could show evidence

of non-null correlations, some of them being negative. They can be due both to the

presence of opposite reaction to the common factors but also due to the presence of

negative ρi coefficients. Within our model, negative ρ might thus exist, but how can we

interpret them from a pricing perspective? We read them as evidences of risk absorption

due to the network exposure. In fact, a negative ρi allows a reduction of the exposure

of one asset to the common factors, since the i − th component of the second term in

equation (24) becomes negative. However, the consequence of this risk absorption is also

a reduction of the contribution of network exposure to the expected return. In fact, also

the i− th component of the third term in equation (28) will become negative.

We further note that the use of a matrix A = I −RW lead to a focus on the impact

of the network exposures where the asset-specific coefficients ρi represents the impact on

i coming from the assets linked to i, or, from a different viewpoint, it is the loading of i
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from the network risk. We might, however, be interested on the effect of asset i on the

other assets, having thus a ρi coefficient that represents the impact of i to the assets to

which i is linked. We might see this as an outgoing effect of i to other assets through the

network, or as a contribution of i to the network factor.

This can easily be achieved with a simple modification of the model, by replacing A with

B = I −WR. With such a change, the return equation (18) becomes

Ri,t = E [Ri,t] +
k∑
j=1

wi,jρj (Rj,t − E [Rj,t]) + β̄iFt + ηi,t. (29)

We now note that the ρj coefficients represent the impact of the j − th asset on the

other assets. Moreover, if we consider the reduced form representation of the model, we

have

Rt = E [Rt] + Bβ̄Ft + Bηt (30)

where B = B−1. The reduced form betas can again we seen as a by-product of both

the structural risk exposure, the β̄ and the inflating factor coming from the network, the

B. However, the structure of B has a different interpretation. In fact, the coefficients are

no more linked to the loading of the network risk but rather to the effect a given asset is

causing to other assets or to its contribution to the network risk.

3.2 Risk decomposition

The model in 11 allows recovering a risk decomposition similar to that available for the

standard linear factor models in 2. The starting point is the reduced form introduced

at the beginning of the previous subsection, see 21. Equation 21 highlights that the

estimation output of standard multifactor models can be coherent with the presence of

contemporaneous links across assets. In fact, we can redefine β = Aβ̄ and εt = Aηt,

and estimate the reduced form mean parameters, the matrix β and the covariance of εt.

However, this do not lead to the identification of the structural parameters: the structural
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factor loading β̄, and the network related coefficient ρ included in A. On the contrary,

our purpose is to identify structural parameters of 11. Given the knowledge of structural

parameters, the total variance of the risky assets can be written as follows

V [Rt] = Aβ̄β̄′A′σ2
m +AΩηA′ (31)

Despite being equivalent to the traditional risk decomposition of a multifactor model,

31 provides a relevant insight. In fact, both the systematic and idiosyncratic risk com-

ponents are influenced by the presence of interconnections across assets as the matrix

A appears on both the right hand site terms. This shows also that, if we estimate the

reduced form model with standard linear methods, our evaluations of the systematic and

idiosyncratic risk components are in reality a blend of the structural loadings and idiosyn-

cratic risks with the network relations. Keiler and Eder (2013) suggest that the presence

of spatial links could be interpreted as a systemic risk contribution. However, the previous

decomposition provides an alternative view, where spatial dependence is not an additive

source of risk but rather a multiplicative one, where the asset-specific effect cannot be

easily recovered (as it depends on both the structure of the network and the associated

W matrix and the spatial parameters in R).

Obviously, the same structure appears at the portfolio level where we have

V [rp,t] = ω′Aβ̄ΣF β̄
′A′ω + ω′AΩηA′ω (32)

Since our main focus is a portfolio of risky assets, we start elaborating on the last

decomposition of the portfolio total risk. Nevertheless, we stress that comments similar

to those later reported apply also to each risky asset return. We assume that we want

to maintain a reference with the structural parameters β̄ as they represent the impact of

systematic movements on the portfolio. However, the existence of interconnections across

assets is affecting such impact at the portfolio level, moving it away from that we would
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have observed if interconnections were not be present. The latter, common factor loading

without interconnections, would equal ω′β, but in reality, i.e. with interconnections, we

have ω′Aβ̄. We might thus interpret the product ω′A as a transformation of portfolio

weights, due to the impact of the interconnections across assets. The factor A amplifies or

reduces the relevance of one asset compared to its true monetary weight in the portfolio.

Those modified weights represent the impact at the portfolio level of systematic shocks af-

fecting the risky assets. The interconnections are thus matched with the portfolio weights

rather than altering the betas. This is just a choice which we further motivate by the

decomposition we now introduce.

We first note that, if assets interconnections are not present (that is when A = I), the

idiosyncratic risk equals Ωη while the systematic risk component is β̄ΣF β̄
′. We rewrite

portfolio variance decomposition in 32 by adding and subtracting the portfolio idiosyn-

cratic and systematic variance components when those are not influenced by asset inter-

connections:

V [rp,t] = ω′Aβ̄ΣF β̄
′A′ω + ω′AΩηA′ω ± ω′β̄ΣF β̄

′ω ± ω′Ωηω (33)

After rearranging, the total portfolio variance can be recast into a decomposition

counting four different terms

V [rp,t] = ω′β̄ΣF β̄
′ω︸ ︷︷ ︸

I

+
(
ω′Aβ̄ΣF β̄

′A′ω − ω′β̄ΣF β̄
′ω
)︸ ︷︷ ︸

II

(34)

+ ω′Ωηω︸ ︷︷ ︸
III

+ (ω′AΩηA′ω − ω′Ωηω)︸ ︷︷ ︸
IV

(35)

We give the following interpretation to the four risk components:

I Is the structural systematic risk component that depends on the structural loadings

from the common factors and from the covariance of the common factors; this is the
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exogenous systematic effect;

II Is the of asset interconnections on the systematic risk component, or first contribu-

tion of network exposure to the total risk; this is the endogenous systematic effect;

III Is the structural idiosyncratic component that depends only on the structural shocks

covariance;

IV Is the effect of interconnections on the idiosyncratic risk, or second contribution

of network exposure to the total risk; this might be interpreted as an endogenous

amplification of idiosyncratic risks.

Note that by adding the second and fourth terms we obtain the total contribution of

network exposure to the total portfolio risk. We finally notice that the model with assets

interconnections gives the standard multifactor model if there are no interconnections,

that is W is a null matrix, or, if the coefficient ρ is statistically not significant.

In addition, the network exposure impact on the idiosyncratic part of the variance

implies that the diversification benefits might be endangered depending on the network

structure. In fact, despite the fourth term will decrease with increasing cross-sectional

dimension, the decrease speed will be smaller compared to the case without network

effects.

Similarly to the standard linear factor model, we can recover analytical elements in

a simplified setting. As we previously stated, the covariance matrix Ωη is diagonal; we

further assume that the diagonal elements are set to an average value σ̄2 = 1. In addition,

we take an equally weighted portfolio, consider the existence of a single coefficient ρ for

all asset, and take a limiting case where all assets are connected (thus W has zeros only

over the main diagonal, while off-diagonal terms equal 1
K−1 after row-normalization). In

this case, it can be shown that
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ω′AΩηA′ω = σ̄2ω′AA′ω (36)

=
σ̄2

K2
i′KAA′iK

=
K + ρ2

(K + ρ)2 (ρ− 1)2
σ̄2

where K is the asset number and iK is a K−dimensional vector of ones.11 Moreover,

we have that

limK→∞
K + ρ2

(K + ρ)2 (ρ− 1)2
σ̄2 = 0 (37)

thus preserving the diversification benefit. However, the idiosyncratic risk contribution

is higher than in the case without spatial dependence (i.e. with ρ = 0). In fact, we

can show that the above reported portfolio idiosyncratic risk is higher than 1
K
σ̄2 thus

confirming that term IV is positive. Figure (1) provides a graphical example with different

ρ values of the portfolio idiosyncratic risk across different portfolio sizes.

As we noted in the previous subsection, the elements of the matrix R can be also

negative, thus leading to negative correlations across asset returns. In that case, the

negative ρi play a role equivalent to negative correlation thus absorbing a portion of the

systematic or idiosyncratic risks. As a consequence, in a general model with heteregenous

asset reaction to the network exposure, the components II and IV in the risk decomposition

we have just introduced, can also become negative. In such a case, the network exposure

reduces risk, and this could also be seen as a kind of flight-to-safety effect: if shocks hit

financial assets and then transmit to industrial pro-cyclical sectors, we cannot exclude

that the anti-cyclical sectors will anyway suffer.

The previous model gives thus a framework where we can analyse the impact at the

11In the special case considered the diagonal elements of A equals (K−1)ρ−K
ρ2+(K−1)ρ−K and the off-diagonal

elements are −ρ
ρ2+(K−1)ρ−K . Moreover, the diagonal elements of AA equal Kρ2+[(K−1)ρ−K]2

[ρ2+(K−1)ρ−K]2
and the off-

diagonal are (K−1)ρ2−2ρ[(K−1)ρ−K]

[ρ2+(K−1)ρ−K]2
. Summing up the elements in AA and simplifying we obtain the above

reported result.
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Figure 1: Portfolio idiosyncratic risk across different ρ levels and increasing number of
assets. The case ρ = 0 corresponds to the absence of spatial links and is the standard
result for diversification benefits.

portfolio level of the interconnections we might observe across assets, and how those in-

terconnections can endanger/limit the benefits of portfolio diversification. The following

section provides some further evidences, examples and comments on a simulated frame-

work.

3.3 Simulation example

To give an idea of the ability of this proposed framework to provide insightful features

and mostly of the relevance of the parameter ρ, we simulate 100 different stocks returns

that evolve according to a single factor model. The common factor has a volatility of

15% per year and its return is set to 0%. Moreover, the structural betas of the 100

stocks loading the common factor movements have been extracted from a uniform distri-

bution U (0.8; 1.2), and the idiosyncratic volatilities have been randomly generated from

u uniform distribution U (20%; 40%). Then, we consider three different spatial matrices

W :

• W1, the Market Matrix, which is the spatial matrix where each asset is linked

to all the others so that the network is fully connected. Since, by definition, the
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principal diagonal of the spatial matrix contains only zeros, the market matrix equals

W1 = 1k1
′
k − Ik;

• W2, the Two-Neighbours Matrix, which is a tri-diagonal matrix (with zeros on the

main diagonal) where each asset has only two neighbours (assets 1 and K have only

a single neighbour);

• W3, the Random Matrix, where each element of the matrix, main diagonal excluded,

is extracted from a Bernoulli density with probability set to p = 0.3.

Note that matrices W1 and W2 are symmetric while matrix W3 is not symmetric.

In the presence of asset connections, the variance and risk depend not only on how the

spatial effect spreads among the assets or in other words, on the network structure, but

also on the parameter monitoring the network (or spatial) impact, that is the value of ρ

or R. Therefore, in order to shed some light on the relation between those two elements,

we take into account increasing values of ρ, starting from 0, thus absence of spatial links,

to 0.25, 0.5 and 0.75.

We start from the analysis of returns and consider the impact of network connections

on the common factor exposure. We thus compare the structural betas β̄ with the betas

augmented by the presence of links across assets, that is

Aβ̄ = β̄ +
∞∑
j=1

ρjW jβ̄. (38)

As we have extracted betas from a uniform, to simplify the graphical representation

we order assets with respect to the values of β̄ and separately report in Figures (2) and

(3) the structural beta and the increases in the betas induced by different values of ρ and

different spatial matrices W .

We observe that, when the spatial matrix changes, the effect is clearly different across

assets depending on the network structure, but the average of the betas is almost the

same for all the three W . On the contrary, changes to the coefficient ρ will lead to

substantial modifications of the betas; with increasing levels of ρ the network impact
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Figure 2: Beta values across assets: structural betas (in blue) and augmented betas (in
red) across different spatial matrices W .

Figure 3: Beta values across assets: structural betas (in blue) and augmented betas (in
red) across different values for ρ with the random matrix W .
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tends to increase exponentially and beta are significantly larger higher is the ρ having

significant implications on the risk premia. In fact larger beta because of higher network

exposures (i.e. higher ρ) means a larger risk premia.

We then focus on the variance decomposition for each simulated asset and, in partic-

ular, we analyse the role on the total variance of the four components presented above.

The main purpose is to show how relevant is the effect of the interconnections on the total

variance of the assets. By the model previous introduced we are able to determine the

impact network interconnections have on the exposures to systematic and the idiosyn-

cratic components. More specifically, we show here how the network exposure impact on

the variance decomposition implied by a factor model

Our model captures network exposures by means of the spatial parameter ρ (or by

the matrix R). We then starts from a ρ equal to zero, implying that the matrix A of

simultaneous link (network interconnections) becomes an identity matrix. Consequently,

the model collapses to the standard general APT/multifactor model, and the variance

components are just two: the systematic and the idiosyncratic, see Figure (4).

Figure 4: Relative variance decomposition with no spatial interaction ρ = 0, the model
corresponds to general multifactor model.

If ρ takes positive values, it means that there is second relevant source of risk: assets re-

turns are characterized by network interconnections. This effect changes the composition

of the asset’s variance as we have shown above.

33



Using the market matrix W1 and ρ = 0.25, for each asset the variance has three

relevant components: the systematic component, the idiosyncratic component and the

network impact on the systematic component. The network effect on the idiosyncratic

components is almost close to zero and thus not relevant. Similar results are obtained by

increasing the value of the ρ coefficient. Therefore, if all assets are neighbours, we have

that the network connections impact almost only on the systematic component.

Figure 5: Relative variance decomposition with spatial interaction ρ = 0.25 and Spatial
Matrix W1, we note three relevant components the systematic component, the idiosyn-
cratic component, and the network impact on the systematic component; network impact
on the idiosyncratic component is tiny and not visible in the plot.

If we substitute the Market matrix with Two-neighbours matrix while still maintaining

the ρ = 0.25, we can observe for each asset variance the presence of the four components:

the first two standard (systematic and idiosyncratic) terms as well as the two network

impacts on the systematic and idiosyncratic components. With respect to the previous

case, the change in the structure of the system, the network connections and the way

shocks spread across the network, has a relevant effect. When this is combined with

the impact of network connections on the risk, we see that the system becomes more

vulnerable. In fact, even if the spatial parameter is the same of the previous case, ρ = 0.25,

the network impact on asset variances is much higher.
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Figure 6: Relative variance decomposition with spatial interaction ρ = 0.25 and Spatial
Matrix W2 ,we distinguish four components the Systematic component, Idiosyncratic
component, and the spatial effect on the systematic component and the spatial Effect on
the idiosyncratic component

Using ρ = 0.5 and random matrix, we distinguish four sources of risks ,as in the

previous case, but the spatial effect is clearly prominent.

In the simulation above we have investigated the effect of ρ, and Wi on the variance of

each asset. To investigate the impact of ρ, and Wi on portfolio variance and diversification

we construct an equal weighted portfolio with the 100 assets. We compute the variance

for increasing spatial effect ρ, using the Random Matrix. We observe that the spatial

effect on the systematic and idiosyncratic components for the portfolio variance becomes

prominent as soon as ρ increases (see figure 8).

As in Ross (1976), whenever we hold a portfolio with very large number of asset, the

variance of the idiosyncratic component tends to assume very small value. The principal

results of our simulations is that the spatial interaction affects the way to diversify the

risk on the portfolio, in particular for high values of ρ i.e 0.75, the idiosyncratic part

of the variance of equal weighted portfolio assumes higher value than the case with no

spatial interactions for the same number of assets held (see figure 9), in accordance with

the graphical example of the previous section.
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Figure 7: Relative variance decomposition for each asset with spatial interaction ρ = 0.5
and Spatial Matrix W3 ”Random Matrix” .We distinguish four components the Systematic
component, Idiosyncratic component, and the spatial effect on the systematic component
and the spatial Effect on the idiosyncratic component, in this case the spatial effect
becomes relevant

Figure 8: Relative variance of equal weighted portfolio with increasing spatial parameters
ρ
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Figure 9: Relative variance of equal weighted portfolio with increasing spatial parameters
ρ

In summary we have described the effect of different network interconnections and

exposures on asset and portfolio volatility.

The next session we present the estimation methodology needed to apply the model

presented above to market data.

4 Model estimation

We have seen how to interpret the model parameters and how to derive from the models

intuitive decomposition both on the returns as well as on the total risks. However, model

parameters must be estimated and this poses relevant challenges. Let us report the

simultaneous model equation

ARt = α + β̄Ft + ηt. (39)

As standard econometrics textbook reports, identification conditions are required to

estimate the parameters of A, α, β̄ and V [ηt]. The simple order condition of identification

requires that the model parameters must be less than the parameters we can recover

from the reduced form specification. In fact, the latter can be estimated by least square
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methods, and structural parameters could be recovered thanks to their relation with

reduced form parameters. The reduced form model is

Rt = α? + β̄?Ft + εt. (40)

suggesting we can consistently estimate 4K mean parameters plus 1
2
K (K + 1) covari-

ance parameters. However, an unrestricted structural specification, despite having the

same number of parameters in the covariance, has 4K +K2 mean parameters.

The presence of assets interconnections, summarized into a network, allows a sensible

reduction of the number of parameters included in the matrix A. In fact, if we have

asset-specific network exposures and a single network, we have only K parameters in A.

However, this is not sufficient to achieve identification of the model remaining parameters,

since the order condition is still not satisfied. Identification is obtained by imposing the

diagonality of V [ηt]. Such a choice, which is economically motivated, allows satisfying

the standard order condition for identification.

Nevertheless, further constraints are generally required on the model parameters.

Starting from the spatial econometrics literature, that takes a scalar time invariant ρ

coefficient and a time invariant row-normalized W matrix, we must impose that 1
λmax

<

ρ < 1
λmin

where λmax and λmin are, respectively, the maximum and minimum eigenvalues

of W . This constraint ensures the non-singularity of I − ρW .

In our framework we deviate from traditional approaches in several ways. We first

consider the case of a time-varying spatial matrix, that is Wt. A sufficient condition for

the invertibility of I − ρW : t for all t is stated in the following assumption

Assumption 4.1. The coefficient ρ satisfies the following condition

λ̄−1max < ρ < λ̄−1min (41)

where

λ̄max = min {λt,max}Tt=1 (42)
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λ̄min = max {λt,min}Tt=1 (43)

and λt,max and λt,min are, respectively, the minimum and maximum eigenvalues of a matrix

Wt. �

If we have a diagonal matrix R containing the asset-specific reaction to the spatial

links, we assume the non-singularity which is then validated in the estimation step of the

model:

Assumption 4.2. The diagonal coefficient matrix R is such that

I −RWt (44)

is non-singular for each matrix Wt. �

Note that the previous assumption covers both the case of a time-invariant and time-

varying spatial matrix. We further note that, when we consider a model with R, we must

impose an additional identification condition

Assumption 4.3. The diagonal coefficient matrix R = diag (ρ1, ρ2, . . . , ρK) is such that

ρj = 0 if the j − th row of the matrices Wt contains only zeros (that is the asset j is not

linked to any other asset) for all values of t.�

This condition ensures that the asset specific impact to the network links is estimated

only if such link exist for at least one point in time.

The use of covariance restrictions has a consequence for the estimation of model pa-

rameters. In fact, those must be jointly evaluated, despite the linear model structure

might allow for single equation (single asset) parameter estimation.

Under the two strong parametric restrictions we impose (the structure on A and the

absence of correlation across the idiosyncratic shocks), a viable approach is that of Full

Information Maximum Likelihood (FIML) methods. However, if K is even moderately

large, the total number of parameters to be estimated in the restricted structural model,
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7K, might be quite large. Fortunately, we can follow the approaches commonly used in

spatial econometrics, namely the use of concentrated likelihoods. As in Elhorst (2003),

and LeSage and Pace (2009), we start by writing the full model log-likelihood

L (Θ) =
T∑
j=1

lt (Θ) , (45)

lt (Θ) ∝ −1

2
log|Ω| − 1

2
e′tΩ

−1et, (46)

et = Rt − ᾱ−RWRt − β̄Ft. (47)

where Ω is a diagonal matrix. We can note that, if ρ is known, we can write

Rt −RWRt = Zt = ᾱ + β̄Ft + εt (48)

Therefore, with a know network exposure parameter matrix R, we might estimate the

parameters in ᾱ and in β̄ by least square methods, obtaining the well-known expressions.

In addition, we might even recover standard estimators for the innovation variance. This

suggests that the network exposure parameters can be easily obtained by maximizing the

concentrated likelihood obtained by replacing the other parameters by their least square

estimators.

This will be of a relevant computational importance as it allows reducing the parame-

ters to be jointly estimated to 2K if we concentrate the likelihood with respect to ᾱ and β̄,

and to K if we concentrate also with respect to the innovation variance. Standard errors

can be recovered from the full-model likelihood by numerical evaluations of the Hessian

(and of the gradient if we take a robust parameters covariance matrix). Note that this

approach can be followed even if the spatial matrix W is time-varying.
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5 Empirical analysis

PRELIMINARY AND INCOMPLETE

5.1 Data description

The empirical example we propose to highlight the features of the methodology we out-

lined above is based on the 48 US industry sectors portfolio returns available at the

Kenneth French website. We fit the Carhart (1997) four factor model the model, and we

recover the market, size, book-to-market and momentum factor from the same source, the

Kenneth French website. We point the reader to the works of Fama and French (1995)

and Carhart (1997), for the methodology behind the construction of the risk factors. We

used both monthly and daily data: with the daily data we estimate the spatial matrix W

as we will discuss below, while with the monthly data we estimate the model parameters,

that is, the structural parameters associated with the risk factors and the sector-specific

spatial parameters ρi included in the matrix R.

The sample period we consider starts in January 2000 and ends in December 2013.

[To be included: descriptive statistics - we must decide if we want to include

the range 1993-1999, by now it is not included]

5.2 A benchmark model: the 4-factor CAPM

We first estimate on our data and on both subsamples a reference model, the four-factor

CAPM of Carhart (1997). We provide in Table (1) the point values of estimated betas

for selected economic sectors: three financial sectors, Banks, Insurances and Real Estate,

and three industrial sectors, Autos, Machinery and Chemicals. The selection is clearly

arbitrary but is also motivated by the relevance of the financial side of the US economy

in the subprime crises and by the impact the crisis had on the real economy, represented

by the industrial sectors. The appendix reports the results for the full list of economic

41



sectors.12

Table 1: 4-factor betas for selected economic sectors

Sectors/Betas Market SMB HML Momentum

2000-2006

Chems 1.04? -0.17 0.57? 0.25?

Mach 1.35? 0.40? 0.41? 0.08
Autos 1.22? 0.41? 1.14? 0.20
Banks 0.89? -0.30? 0.58? 0.17?

Insur 0.88? -0.49? 0.63? 0.36?

RlEst 0.55? 0.38? 0.44? 0.21?

2007-2012

Chems 1.31? 0.13 -0.30 -0.21
Mach 1.49? 0.41? -0.40? -0.16
Autos 1.34? 0.78? 0.29 -0.25
Banks 0.89? -0.34? 1.64? 0.39?

Insur 1.13? -0.23 0.40? -0.01
RlEst 1.23? 1.34? 0.72? -0.14

(?) denotes 5% significant coefficients

The betas with respect to the market index are all statistically significant and positive,

as expected. By comparing the two sub-samples we point out a surprising findings,

associated with the Banks sector. For that sector the beta is stable in the two periods,

while for all other sectors we note an increase in the exposure to the market.

For the size factor (SMB) the estimates are quite heterogeneous across the six sectors,

but we highlight the large increase of the Real Estate sector reaction to the size factor.

Moving to th book-to-price factor, we have a general decrease of the betas from 2000-

2006 to 2007-2013. In two cases, for the Chemicals and Machinery sectors, the beta

becomes negative while still being statistically significant. Similarly to the market case,

the Banks sector moves at odds with the remaining ones showing an increase in the

exposure. The last finding is also present in the betas associated with the Momentum

factor that decrease and become negative for all sectors Banks excluded where the beta

increases and is statistically significant in the second sub-sample (it is the only statistically

significant beta in that period).

12Appendix available upon request.
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5.3 Network Estimation

Network interconnections could be determined by just looking at balance sheet direct

exposures (for instance when dealing with financial companies) or estimated from market

data. There are several methods proposed in the financial literature, as examples of

contributions on network analysis we mention, among others: Billio et al. (2012) that

propose a Granger causality approach to detect network connections; the Diebold and

Yilmaz (2013) approach is based on variance decompositions; Hautsch, Schaumburg, and

Schienle (2012, 2013) adopt a two-stage quantile regression approach to determine the

firms’ tail risk exposures; Barigozzi and Brownlees (2013) suggest the estimation of cross-

sectional conditional dependence to represent network interconnections.

Our methodology could be implemented using any of these approaches. In fact, the

model takes the network as an input of the analysis, and is thus conditional to an estimated

network. In the following empirical example we use an extension of the Granger causality

method proposed by Billio et al. (2012).

We also stress that we estimate the spatial matrix for each year using the daily data.

As a consequence, we allow for a time-change in the network structure, inducing thus a

time-variation in the contemporaneous coefficient matrix At. We stress that this choice

induces a mild heteroskedasticity in the reduced form model. As in Billio et al (2012),

we use a GARCH(1,1) to filter out from the daily returns the known heteroscedasticity.

Given the log return series

ri,t = µi + ηi,t (49)

where µi is the conditional mean and ηi,t is the innovation for asset i. Following the

standard literature, we set ηit = σitεit where σt is the conditional standard deviation. The

conditional variance follows a simple GARCH(1,1) process

σ2
it = ωi + αiη

2
i,t−1 + βiσ

2
i,t−1 (50)

with ωi ≥ 0, αi,1 ≥ 0, βi ≥ 0, and αi +βi < 1. In the GARCH literature εi,t is assumed to
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be a sequence of i.i.d random variables with zero mean and unit variance. Therefore, under

this assumption, we are able to compute the so-called standardized residuals εit =
ηit
σit
. On

the standardized residuals we then apply the Granger Causality test on a bi-variate basis,

that is considering pairs of economic sectors. From an analytical viewpoint, we consider

the following equation:

εi,t =
m∑
k=1

akεi,t−k +
m∑
k=1

bkεj,t−k +
m∑
k=1

ckεl,t−k +
m∑
k=1

dkFt−k + %i,t (51)

where εi,t is the standardised residual of asset i,, the dependent variable, ak bk ck

dk are the model coefficients, while %i,t is the uncorrelated white noises and k is the

lag. The model includes several explanatory variables: the “causing series”εj,t and the

lagged dependent variable, εi,t−k, are standard ingredients in the VAR model behind the

Granger causality test; we added here a third series, called the “background series”εl,t

and a common factor Ft. The last two addition to the baseline VAR model are included

in order to make robustify the Granger causality test; we stress that, the bivariate model

where we run the Granger causality test is thus a VARX. The background series εl,t is

taken from the set of remaining 46 sectors time series, so that l 6= i, j. In addition, we

set the common factor Ft to be the market portfolio. In order to determine which is the

preferred model specification, for each pair of causing-caused series εi,t and εj,t we run

a Granger Causality test for each possible background series εm,t. Thus, for each pair

of causing-caused series we have 46 different test statistics determining if εj,t causes in

sense of Granger εi,t. The causality presence is associated with the coefficients ak being

statistically different from zero.

Among the 46 test statistics, we place ourselves on the safe side by picking the worst

case, that is we choose the regression having the higher p-value on the causality tests. We

will thus detect the presence of causality by taking into account a large number of system

specification. The causality presence, as detected with the above outlined procedure, is

our reference to determine the spatial matrix and the associated network structure. In

fact we compute the adjacency matrix (spatial matrix) by setting wi,j = 1 when the p-
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value of the test on the significance of parameters ak of the reference regression for asset

i suggests that asset j Granger-cause asset i at the 5% confidence level.

For each year, we estimate the spatial Matrix Wt and we also row-normalize the

matrices in order to equalized the impact of each unit on all other units, using a standard

procedure in Spatial econometrics, see Elhrost(2003).

To fully appreciate the impact of Granger-causal relationships among various indus-

tries, we provide a visualization of the results of linear Granger-causality tests, applied

over the 14 years sample used.

Granger-causality relationships are drawn as straight lines connecting two economic

sectors, color-coded by the type of sector that is “causing” the relationship, i.e., the sector

at date-t − 1 which Granger-causes the returns of another sector at date t. Only those

relationships significant at the 5% level are depicted. For reasons of space, we report plots

only for two of the 21 yearly networks in Figures 10 and 11: 2002 and 2008. These are

representative time periods encompassing both tranquil and crisis periods in the sample.13

We see that the number of connections between different sectors dramatically increases

from 2002 to 2008.

The graph’s density is 7% for the year 2002 and 15.9% for the year 2008. The density

is given by the the ratio g =
N̄

N
where N̄ is the number of link among the assets and N

is all the possible links among the assets.

5.4 Results

We then move to the estimation of the factor model augmented with the contemporaneous

links across economic sectors. We stress that, while the networks are estimated on the

basis of daily data, and with yearly update of the network, the return model is fit on

monthly data.

The sample period we consider ranges, as before, from 2000 until 2013. Since we

expect that not only connections change through time but also the stock return exposures

13To fully appreciate the dynamic nature of these connections, see the Appendix, available upon request.

45



Figure 10: Estimated Network for the year 2002

Figure 11: Estimated Network for the year 2008

46



to the network connections changes over time, in particular as a consequence of the global

financial crisis of 2007-2009, we split the sample into two intervals. We thus provide

two different estimates of the ρ vector (the diagonal parameter vector of the matrix R):

ρ00−06 for the period 2000 − 2006 and ρ07−13 for the period 2007 − 2013. Each vector

collects the spatial impact coming from the neighbors on the sectors for that period of

time. As we used monthly returns and yearly spatial matrices, we are able to compare for

the same industrial sector both its spatial impact for different time periods and its risk

loading deriving from common factor and from the network exposure. The parameters

are estimated as described in section 4.

Figure 12) shows the estimated spatial parameters ρ vectors for 6 of the 48 industrial

sectors available from the data sample (the same used in Section 5.2) and shows that

during the first period 2000-2006 the spatial parameters ρ vectors associated with financial

institutions (banks and insurances) were lower than the second period of time 2007-

2013. In contrast, for the non financial sectors (Auto, Chemical, Machinery) the spatial

parameters values reduce from the first interval to the second temporal interval.

Figure 12: Estimated spatial parameters ρ for the period 2000− 2006 and for the period
2007− 2013

The Appendix contains the full set of estimated ρi coefficients while selected rhos are

included in Table (2).14 Figure (13) report a comparison of the spatial parameters ρi

14Appendix available upon request.
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across the economic sectors and the two sample periods. We first note that the points

are clustered around the zeros, thus suggesting that the links across assets has a limited

(despite statistically significant) impact. Moreover, there is not a clear pattern between

the two periods with network impacts that can be either increase (points above the dashed

line) or decrease (below the dashed line) from 2000-2006 to 2007-2013. Such an heteroge-

neous behavior might correspond to a different impact depending on the economic sector

reaction to the crises. In fact, as we previously noted, financial sectors and industrial

sectors show a different movement in the ρ coefficients. Furthermore, we note that some

coefficient are negative, either in one of the two periods (more frequently in the second

subsample) or in both periods. Such a finding is coherent with the presence of negative

correlations across the multifactor model residuals and suggests the presence of a risk

absorption in some cases. This might be also interpreted as a sort of disintegration across

sectors, with opposite reactions during and after the crises.

Table 2: Spatial Parameters 6 of 48 sectors for 2000-2006

Sectors/Period 2000-2006 2007-2013

Chems 0.39? 0.11?

Mach 0.48? 0.05?

Autos 0.04? 0.09?

Banks 0.03? 0.14?

Insur 0.15? 0.14?

RlEst 0.06? 0.04?

(?) denotes 5% significant coefficients

Table (3) report the structural betas for selected sectors (see the Appendix, available

upon request, for tables with results on all sectors). We first note that the estimated

betas are not much different from those of the traditional model. Some slight differences

are present, in particular for the significance of the Fama-French and Carhart risk factors.

However, one of the advantages of our model, is its ability to combine a structural

behavior with an impact coming from the network exposure. Building on this aspect,

the model is able to separate for each industrial sector the exposure to systematic risk

and the exposure to risk coming from the spatial interactions. Therefore the beta of the
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Figure 13: Estimated spatial parameters ρ for the period 2000 − 2006 versus those of
period 2007− 2013

Table 3: Structural betas for selected economic sectors

Sectors/Betas Market SMB HML Momentum

2000-2006

Chems 0.83? -0.07 0.43 0.18
Mach 0.95? 0.24? 0.18 -0.04
Autos 1.19? 0.41 1.13? 0.19
Banks 0.86? -0.30 0.55 0.16
Insur 0.79? -0.50 0.55 0.31
RlEst 0.51? 0.37? 0.41 0.19

2007-2012

Chems 1.23? 0.14 -0.38 -0.22
Mach 1.46? 0.41? -0.39 -0.16
Autos 1.28? 0.78 0.32 -0.24
Banks 0.83? -0.33? 1.63? 0.44?

Insur 1.04? -0.25 0.40? 0.06
RlEst 1.20? 1.36? 0.72? -0.12

(?) denotes 5% significant coefficients
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reduced form model,β̄, can be split into two components: the exposure to the common

factors and the exposure to the network. This has been shown in equation (24) with

a constant spatial matrix W . However, with a smoothly evolving matrix we have the

following decomposition:

β̄?t = β̄ +
∞∑
j=1

RjW j
t β̄ (52)

= β̄ + β̄Nett (53)

where β̄?t is the time-varying reduced form beta matrix. The latter is given as the sum

of a time-invariant, structural, term β̄ and a time-varying component β̄Nett influenced by

the time-evolution of the spatial matrix Wt. While the structural component is directly

obtained from the model estimation, the reduced form betas can be computed only con-

ditionally to the estimated model coefficients. Similarly to the case of ρ parameters, we

obtain two different structural beta matrices referring, respectively, to the two samples:

β̄0−06 from January 2000 to December 2006 and β̄07−13 for January 2007 to December

2013. Each β̄. matrix contains the exposure to the four risk factors we consider.

The fact that the reduced-form betas are time-varying implies that the impact of

network connections is time-varying. Therefore, while the sign of the network impact

if only driven by the R matrix, the size of the network impact depends both on the

parameters and the network structure implicit in Wt. With positive ρj coefficients, the

inflation in the factor exposures might be further amplified by the network structure.

We first provide some insight from the graphical representation of the average network

impact on the betas. We thus average over the yearly reduced form betas as follows:
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β̄?00−06 =
1

7

2007∑
j=2000

β̄?j (54)

= β̄ +
2007∑
j=2000

β̄Netj (55)

and similarly for the second subsample.

Figure (14) reveals the average exposure to the market risk for 6 out of the 48 sectors

in the two samples. It is worth noticing that for all sectors the overall exposure to the

market risk increases from the first to the second period. However, the change is due to a

pure increase in the structural exposure for the real economy sectors, while for financial

sectors, and in particular for the banking sector, the change is driven by a modification

in the network exposure.

Figure 14: The graph captures for each period 2000− 2006 and 2007− 2013 the exposure
to risk, distinguishing the systematic contribution and the network contribution

To provide further insights we plot the reduced form yearly betas. We remind that,

by construction, the reduced form betas are time-varying, thanks to the time change of

the spatial matrices Wt.

The previous analyses focus on the estimated parameters and on their variation across

economic sectors and over time. We now move to a different framework and evaluate the
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impact of both the systemic and network exposure on the portfolio risk. We note that,

according to equation (35) the total risk is given as a sum of four components. Given

the estimation strategy adopted, the first and third components, that is the structural

systematic and structural idiosyncratic ones, are constant on the two sub-samples 2000-

2006 and 2007-2013. On the contrary, the second and fourth components, the network

impacts on the systematic and idiosyncratic risk, are time-varying and change on a yearly

basis as they depend on the spatial link matrices Wt. We perform thus perform a first

evaluation at two specific points in time, 2006 and 2013. We consider an equally weighted

allocation strategy and vary the portfolio size (in terms of assets number), starting from

a 5-sector portfolio up to a 48-sector portfolio. Since the ordering of economic sectors

might have an impact, we select two possible rankings: we order sectors by their total risk

or by the impact of the network exposure (the ρj coefficients). In both cases the ordering

is from the lower to the higher value of the two indicators. Then, for each portfolio we

report in Figures from (15) to (18) the absolute contribution to the portfolio total risk of

the four components of (35).

Some elements clearly emerge. Firstly, the systematic component has a predominant

role independently from the sector ordering and the sample. Secondly, the network impact

on the idiosyncratic risk is almost irrelevant, and the idiosyncratic component has a minor

role. The latter finding might be seen as a confirmation of the appropriateness of the

four-factor model (augmented with the network exposure) in capturing the risk sources

affecting the economic sectors. Thirdly, we note that the risk absorption has a relevant

role if we order assets on the basis of the ρj coefficients, a somewhat expected finding.

Fourthly, the network exposure on the systematic risk is more clear in the first subsample

and the total risk sensibly increases from 2006 to 2013. This might suggest that the

financial crisis had an effect mostly on the structural systematic exposure to the risk

factors while the network impact role is decreased.

A closer look at this last element might come from a yearly evaluation of the vari-

ance decomposition, see Table (4). We remind that the first and third components (the
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structural systematic and idiosyncratic terms) are constant over sub-samples. On the

contrary, the risk contribution from the network impact, either on the systematic or the

idiosyncratic terms, is time-varying. W note that the overall risk if sensibly higher in

the second subsample due to the increase in the systematic component. This signals the

relevant impact of the crisis that has modified on the one side the risk of the common

factors and on the other side the reaction to the common factors. Secondly, we observe

that the idiosyncratic risk contributions have a minor impact, less than 5% from 2000

to 2006 and even smaller from 2007 to 2013. We read this as both a by-product of the

diversification, the ability of the structural model to capture the common risk exposures,

and, for the decrease in the second sub-sample, as a consequence of the large increase in

the systematic risks. The links across economic sectors have some impact on the system-

atic risks, much higher in the first subsample, in general higher than 10%. The decreased

relevance from 2007-2013 is, in our opinion, again a consequence of the increase in the

structural risk exposure to systematic risks and can be read as an effect of the global

diffusion of the crisis.

Figure 15: Variance decomposition for equally weighted portfolio with different number
of assets; 2006 decomposition with assets ordered by increasing total risk.
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Figure 16: Variance decomposition for equally weighted portfolio with different number
of assets; 2006 decomposition with assets ordered by increasing ρj coefficient.

Figure 17: Variance decomposition for equally weighted portfolio with different number
of assets; 2013 decomposition with assets ordered by increasing total risk.
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Figure 18: Variance decomposition for equally weighted portfolio with different number
of assets; 2013 decomposition with assets ordered by increasing ρj coefficient.

Table 4: Variance decomposition

Absolute Relative
Year I II III IV I II III IV

2000 11.233 2.205 0.454 0.097 80.30% 15.76% 3.24% 0.69%
2001 11.233 2.651 0.454 0.140 77.59% 18.31% 3.14% 0.97%
2002 11.233 2.001 0.454 0.131 81.29% 14.48% 3.28% 0.95%
2003 11.233 2.038 0.454 0.191 80.72% 14.65% 3.26% 1.37%
2004 11.233 0.524 0.454 0.076 91.42% 4.26% 3.69% 0.62%
2005 11.233 1.720 0.454 0.078 83.30% 12.76% 3.37% 0.58%
2006 11.233 1.890 0.454 0.108 82.08% 13.81% 3.32% 0.79%

2007 32.050 1.744 0.362 0.023 93.77% 5.10% 1.06% 0.07%
2008 32.050 0.580 0.362 0.015 97.10% 1.76% 1.10% 0.05%
2009 32.050 0.577 0.362 0.005 97.14% 1.75% 1.10% 0.01%
2010 32.050 0.726 0.362 0.007 96.70% 2.19% 1.09% 0.02%
2011 32.050 4.270 0.362 0.114 87.10% 11.60% 0.98% 0.31%
2012 32.050 0.713 0.362 0.007 96.73% 2.15% 1.09% 0.02%
2013 32.050 0.505 0.362 0.008 97.34% 1.53% 1.10% 0.02%

The table reports the decomposition of the variance for the equally weighted portfolio composed

by the 48 economic sectors. The components reflects the contribution of the systematic struc-

tural risk (I - constant across subsamples), idiosyncratic structural risk (III - constant across

subsamples), network impact on systematic risk (II) and network impact on idiosyncratic risk

(IV).
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6 Conclusions

TO BE INCLUDED
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